Table des matières

Physique atomique

À retenir

Sur le moment cinétique quantique

Définition inspirée du moment cinétique classique : $\vec{L}=\vec{R}\wedge\vec{P}$ avec $\vec{R} = \left| \begin{array}{l} X \\ Y \\ Z \end{array} \right.$ et $\vec{P} = \left| \begin{array}{l} P_X \\ P_Y \\ P_Z \end{array} \right.$

On en déduit que $[L^2,\vec{L}]=0$. Autrement dit, ces opérateurs commutent. On peut donc construire une base de vecteurs propres commune à ces deux observables.

On note J le moment cinétique général, on pose $J_\pm = J_X \pm iJ_Y$, et l'on montre que, pour $\left|j,m\right\rangle$ vecteur propre commun à $J^2,J_Z$ et où $j(j+1)\hbar^2$ et $m\hbar$ sont les valeurs propres associées :

$J_+\left|j,m\right\rangle = \hbar\sqrt{j(j+1)-m(m+1)} \left|j,m+1\right\rangle$

$J_-\left|j,m\right\rangle = \hbar\sqrt{j(j+1)-m(m-1)} \left|j,m-1\right\rangle$